
How do we build an In-house
Government Document Understanding Service
The technical development journey

Direct Motivation – PRS for MOH
● Foreign Nurse Registration involves the submission and

review of multiple documents (e.g., passports, nursing
education transcripts, certificate verifications)

● All the documents are being processed manually

● This leads to high error rates for mismatched inputs
during submission, and low efficiency during review

● The MOH system is sensitive-high

● PRS uses READ to automate this processing

How we got started – initial architecture

Scanned
Documents

Off-the-shelf Document Analyzer API
(e.g., AWS Textract, LLMs)

Structured
Outputs

Okay! Mission Accomplished! But…

We need an in-house solution to
process sensitive-high
documents, that can function with
no internet access

So, we cannot use 3rd-party
Commercial Off-The-Shelf
(COTS) solutions; even if we can,
most of them cannot provide
satisfactory performance.

Overall, our in-house solution is better than COTS!

Document Type AWS Textract
(Commercial Off-The-Shelf)

Our Solution
(In-house & On-prem)

Passport 54/78 (69.2%) 76/78 (97.4%)

Transcripts of Nursing Education 8/16 (50.0%) 13/16 (81.3%)

Practising Certificate 11/18 (61.1%) 17/18 (94.4%)

● >100 real document submissions from PRS were collected for comparison
● 3 different document types were tested
● Our in-house solution performs much better than COTS consistently across all types

* The reported accuracy above is measured at the document level. It checks if all the text for target entities can be correctly
 OCRed/extracted for each document.

Many are also questioning: why not just use LLMs?

● Majority (>60%) docs
incurred errors when
uploading, preventing
further questions

* These screenshots were tested as of 2-Feb-2025 in DeepSeek-R1 and GPT-o1

● The rest were even worse, with the LLM
confidently returning incorrect results

Should be 50 pages

Wrong Statements

There is no such name
in the document

Wrong Statements

Building an end-to-end solution took longer than expected

The implementation wasn’t as
straightforward as we initially
thought though. Here is the start…

We start from comparing locally-hosted OCR engines

Scanned
Documents

Text Extraction with Local OCR Engine

Structured
Outputs

* All above are under Apache, the local deployment would be suitable for even commercial usage

Try before making the choice – local OCR comparison

● One of the earliest open-source OCR engines
funded in 1980s by HP; handed over to
Google in 2006.

● LSTM-based algorithm for line/word
detection and classifier-based character
recognition.

● Deep Learning framework was not popular
that time, thus it wasn’t used much.

- High text recognition error rate
- High chance of missing words
- Wrongly separate words within the same field

*
X2000644N

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf

Try before making the choice – local OCR comparison

● Text detection is implemented using CRAFT
algorithm with VGG-16 as the backbone in
PyTorch.

● Text recognition is backboned by CRNN,
consisting of ResNet as feature extraction,
LSTM as sequence encoder, and CTC as the
decoder.

● The overall framework is modernized, but still
doesn’t benefit from the latest
transformer-based architecture.

- Better at word detection
- Worse recognition error rate
- Better at finding long-field text, but still not

satisfactory

Xzoo4lln

https://github.com/clovaai/CRAFT-pytorch
https://github.com/clovaai/CRAFT-pytorch
https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1512.03385
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.cs.toronto.edu/~graves/icml_2006.pdf

Try before making the choice – local OCR comparison

- Almost perfect at text detection and recognition
- Runnable on CPUs with 2-3s per page, but much faster

on GPU at <10ms per page

● Text detection by default uses DB++,
a ResNet-50 backboned model with
Differentiable Binarization and
Adaptive Scale Fusion.

● Text recognition by default uses
SVTR, a Vision Transformer-like
backboned model, with faster
inference and higher accuracy.

● An additional text direction classifier
to deal with deskewed inputs.

https://arxiv.org/abs/2202.10304
https://arxiv.org/pdf/2205.00159

Larger-scale testing on bigger dataset

● We tried extracting the text fields from EdisonTD dataset*, using the three different
local OCR engines
○ >200 passport images from various countries

● Paddle OCR did consistently well,
while the performance from
Tesseract and easyOCR were consistent too
(on the negative side) :(

* EdisonTD is an open dataset covers containing information about travel and travel-related documents from almost every country on the globe

https://www.nidsenter.no/en/services/reference-databases/edison-td/

Now, we are ready to go!??

There is always a gap between expectation and reality

Expectation Reality

ph.jpg ph.pdf

- Always in png or jpg format

- Perfectly cropped with a central view

- Highest possible scanning quality

- All samples are normalized to the same size

- No rotation or significant image skewing

- Most are in pdf format

- Actual image can be anywhere, with noisy background

- Scanning quality varies significantly

- Image files come in different sizes

- Rotations are very common with random angles

But technically, what do they mean?

● Straightforward ones
○ Inputs are in pdf format — Convert pdfs into jpg/png formats
○ Images are rotated — Deskew the image based on the text direction
○ Images come in different sizes — Normalize the size

● Less intuitive ones
○ Scanned images are low-quality, even mature

commercial OCR engines cannot do the job
■ Computer vision tricks to enhance the quality

Add the Preprocess module into the pipeline

Scanned
Documents

Local
OCR

Key Information
Extraction

with Local Model
Structured

Outputs
Text-based

● BERT-Ner
● Spacy-Ner

Multimodal-based
● LayoutLM-series

LLM-based
● Llama 3
● Phi-3

Image
Preprocess

● Format converter
● Size normalization
● Image cropping
● Re-normalization
● Image deskew
● Text enhancement

Paddle OCR

https://huggingface.co/dslim/bert-base-NER
https://spacy.io/universe/project/video-spacys-ner-model-alt
https://huggingface.co/docs/transformers/en/model_doc/layoutlmv3
https://www.llama.com/
https://huggingface.co/microsoft/Phi-3.5-MoE-instruct

Zoom into image pre-processing

Image
Loader /

Converter

Normalize
Image

Image
Cropping

Image
deskew

Re-normal
ize Image

Text
Enhance

Zoom into image pre-processing – image cropping

Grayscale
and

Smoothing

Morphological
Opening and

Closing

Thresholdi
ng

Find
Borders

and Crop
Normalized

Image

https://www.geeksforgeeks.org/python-grayscaling-of-images-using-opencv/
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html
https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html

Zoom into image pre-processing – image deskew

Cropped
Image

Hough
Transform

Calculate
Skewed
Angle

CNN-based
0° vs 180°
Classifier

https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html

Zoom into image pre-processing – text enhancement

De-skewed
Image

Erode Dilate Blackhat

https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html

Now are we ready for production usage yet?

Yes, we get good OCR results, but what’s more?

● OCR
○ Detect text bounding boxes
○ Recognize text in each box

● KIE
○ Accurately map relevant text fields into

preloaded taxonomy
○ Discard irrelevant text fields from OCR

KIE using LayoutLM as a downstream task after OCR

* Reference: Huang Yupan, et al. "Layoutlmv3: Pre-training for document ai with unified text and image masking." ACM International Conference on Multimedia, MM 2022 [paper] [code]

● Pre-trained transformer for
○ Masked language model (MLM)
○ Masked image model (MIM)
○ Word patch alignment (WPA)

● A classification head for KIE in
downstreaming usage

● In layman’s terms:
○ The model uses multimodal info,

■ word meanings and positions
■ image content and positions
■ text-image alignment

https://arxiv.org/pdf/2204.08387.pdf
https://github.com/microsoft/unilm/tree/master/layoutlmv3

Oh no! we are lacking training samples — data augmentation
Border Crop Add Noise Rotation

Original Image

Padding

Perspective Color Jitter Posterized

And random
combinations of

them

We also need the right page from the right document

Passport

Transcripts

Certificate

ID card

Input documents Stage 1.
Document-level

Classifier

Stage 2.
Page-level
Classifier

Document classifier – vision features

CLIP (Contrastive Image-Language Pretraining):
Trained to match similarity between image and text

caption pairs. Most similar caption used as prediction.

Tip-Adapter: Cache image features of a few training examples
and their one-hot encoded labels. Take weighted sum of CLIP

logits and Tip logits before making prediction.

Document classifier – text features and ensembles

● TF-IDF
○ A statistical way to

assign each word a
score (in terms of
frequency) to each
class

● Ensemble
○ BaggingClassifier to

combine vision and
text classifier

○ Achieves 97% F1 for
in-house PRS
documents

Zoom-in to double check low-confidence entities

● Double-confirm entities
○ Some extractions could still

have low confidence scores,
especially for blurry entities

○ If confidence score is low, we
zoom in and re-do a local
OCR

Further post-processing with domain knowledges
● Date format normalization

○ Different document type naturally has different
date format

○ Even for the same document type, different
country comes with different date format

○ Rules are added to normalize date according to
document context

● Typo auto-correction & Field validation
○ Quite often, OCR mis-recognizes one or two letters

among long sentences

○ Maintain common words set and common OCR errors

○ Check Levenshtein distance and candidate frequency
to auto-correct typos

Now, the completed pipeline looks like this!

Scanned
Documents

Local
OCR

Local
KIE

Model

Structured
Outputs

● LayoutLMv3

Image
Preprocess

● Format converter
● Size normalization
● Image cropping
● Re-normalization
● Image deskew
● Text enhancement

● Paddle OCR

Post
Process

● Zoom-in for double-confirm
● Date normalization
● Typo correction
● Field validation

Document
/ Page

Classifier

● CLIP vision model
● TF-IDF text model

https://huggingface.co/docs/transformers/en/model_doc/layoutlmv3

And here is the real production impact on PRS
● Integrated with PRS online submission system, providing

real-time document processing with 1-2s latency

● Launched publicly in June 2024

● 18% of applications were prevented from being routed back
due to submitted information mismatches

https://www.healthprofessionals.gov.sg/snb/registration-enrolment/application-for-registration-enrolment

Can we move it further!

Let’s turn OCR into a white box – optimize from inside out

Text
Detection

Text
Orientation
Classifier

Text
Recognition

OCR Engine

or
PASSPORT

Why fine-tune OCR models?

● Special and unique fonts are not uncommon
○ Educational certificates / transcripts

○ Professional verification certificates

○ Marriage certificates

● These cannot be reliably detected, classified,
or recognized

Fine-tune text detection model – DB algorithm as an example

Pre-trained ResNet50 as the backbone
for image feature extraction

Pre-trained ResNet-FPN (Feature Pyramid Network)
as the neck for image feature enhancement

Detection head with 1 conv and
2 de-conv layers each for
probability and threshold map

Calculate Differentiable
Binary (DB) map

BCE (Binary Cross-Entropy)
as the loss function

* Reference: Minghui Liao, et al. "Real-time Scene Text Detection with Differentiable Binarization." AAAI, 2020 [paper]

https://arxiv.org/pdf/1911.08947

Fine-tune text direction classification model

* Reference: Andrew Howard, et al. "Searching for MobileNetV3." ICCV, 2019 [paper]

Pre-trained light-weighted MobileNet-v3 as the
backbone for image feature extraction

1 FC (Fully Connected)
layer, followed by softmax
as the classification
head, with Cross-Entropy
as the loss

https://arxiv.org/pdf/1905.02244

Fine-tune text recognition model – SVTR as an example
ViT (Vision Transformer)
based patch embedding
as the backbone

Height progressively decreased network
as the neck to aggregate spatial features
into sequential ones

A fully connected layer using
CTC (Connectionist Temporal
Classification) loss as the head

* Reference: Yongkun Du, et al. "SVTR: Scene Text Recognition with a Single Visual Model." IJCAI, 2022 [paper]

https://arxiv.org/pdf/2205.00159

Blurry detection – ask for immediate reupload if blurry

Laplacian
operator

● The Laplacian operator is applied
to an image by convolving the
operator with each pixel

● The result of the convolution is a
new image that highlights the
edges in the original image

● A Laplacian variance can be
used as a focus measure to
differentiate blurry vs. in-focus
images

Table
detection

Reconstruct
tables

● A two-step processing for tables
○ Object detection using yolo to locate tables, if any
○ Re-construct tables using table structure and cell locations, using SLAnet

Table detection & extraction – dealing with tables

https://github.com/ultralytics/ultralytics
https://arxiv.org/pdf/2210.05391.pdf

End-to-End delivery with a team of 3 data scientists

DATA GATHERING
& CLEANING

SOFTWARE
ENGINEERING

DEVOPS

Tech Stack

Language

Backend

DevOps

Cloud

Python, Typescript, Shell

FastAPI, Uvicorn, PyTorch, Transformers, OpenCV, PaddleOCR, OpenClip,
Spacy, XGBoost, GliNER PyMuPDF, Ultralytics, PyTest

GitLab CI/CD, Kubernetes, Docker, CloudWatch, Parameter Store

AWS S3, ECR, ECS (CPU Fargate / GPU), ALB+ASG, SageMaker, NAT
Gateway, Lambda, EventBridge

Engineering practices – quality assurance with enough tests

Unit Test Integration Test Regression Test Performance Test

Ensures each individual
unit works as expected.

Ensures the end-to-end
outputs align with our
expectations.

Ensures any new logic,
models, or features
won’t cause a decline in
the functionality of
existing systems.

Ensures the latency and
scalability under certain
workload.

Gitlab CI Pipeline CD Pipeline on GCC

Engineering practices – CI/CD workflow for in-house services

Local Dev GCC Cloud Agency’s Infra

Dev/UAT Review

Prod Usage

Engineering practices – real-time metrics monitor dashboard

● One-single place to know your
deployed service

○ Overall product metrics

○ Technical metrics

○ Detailed views with breakdown
from different document types

○ Real-time alarming if anything
goes wrong

Engineering practices – model iteration and versioning

Business highlights – unique advantages of READ

- Security Compliance

- Vision Extractions

- Accuracy & speed

- Cost Efficiency

Able to serve sensitive-high documents
(e.g. medical reports, PII, etc)

Able to serve both text and visual data
(e.g. photo, signature, stamp, medical plot, etc)

Fixed infra cost means lower unit price
(much lower than COTS) with big volume

Able to achieve >95% accuracy with
1-2s end-to-end delay*

* the accuracy and latency is reported based on the documents from our SNB/MOH use case, which is significantly better than COTS

What are our next steps?

● Agencies handling complex documents/images/video preferably in
sensitive-high systems with large volume

● Enable complex document/image/video understanding capabilities for other
GovTech platform services

Product expansion – potential use cases beyond PRS

Technical advance – an AI agent to learn from the mistakes

● Complete the loop to automate model iteration with human-corrected outputs
○ So that the same mistakes won’t repeat again and again

● All agencies can benefit from model iteration, without actually sharing the data

Interested to know more? – the team is ready for questions

JIN Yichao
Data Scientist

CHONG Zi Kang
Data Scientist

SHEN Lin
Data Scientist

jin.yichao@gt.tech.gov.sg chong.zi.kang@gt.tech.gov.sg shen.lin@gt.tech.gov.sg

mailto:jin.yichao@gt.tech.gov.sg
mailto:chong.zi.kang@gt.tech.gov.sg
mailto:shen.lin@gt.tech.gov.sg

