
How do we build an In-house 
Government Document Understanding Service
The technical development journey



Direct Motivation – PRS for MOH
● Foreign Nurse Registration involves the submission and 

review of multiple documents (e.g., passports, nursing 
education transcripts, certificate verifications)  

● All the documents are being processed manually 

● This leads to high error rates for mismatched inputs 
during submission, and low efficiency during review

● The MOH system is sensitive-high

● PRS uses READ to automate this processing 



How we got started – initial architecture

Scanned
Documents

Off-the-shelf Document Analyzer API
(e.g., AWS Textract, LLMs)

Structured 
Outputs



Okay! Mission Accomplished! But…

We need an in-house solution to 
process sensitive-high 
documents, that can function with 
no internet access

So, we cannot use 3rd-party 
Commercial Off-The-Shelf 
(COTS) solutions; even if we can, 
most of them cannot provide 
satisfactory performance.



Overall, our in-house solution is better than COTS!

Document Type AWS Textract 
(Commercial Off-The-Shelf)

Our Solution
(In-house & On-prem)

Passport 54/78 (69.2%) 76/78 (97.4%)

Transcripts of Nursing Education 8/16 (50.0%) 13/16 (81.3%)

Practising Certificate 11/18 (61.1%) 17/18 (94.4%)

● >100 real document submissions from PRS were collected for comparison
● 3 different document types were tested
● Our in-house solution performs much better than COTS consistently across all types

* The reported accuracy above is measured at the document level. It checks if all the text for target entities can be correctly 
   OCRed/extracted for each document. 



Many are also questioning: why not just use LLMs?

● Majority (>60%) docs 
incurred errors when 
uploading, preventing 
further questions

* These screenshots were tested as of 2-Feb-2025 in DeepSeek-R1 and GPT-o1

● The rest were even worse, with the LLM 
confidently returning incorrect results

Should be 50 pages

Wrong Statements

There is no such name 
in the document

Wrong Statements



Building an end-to-end solution took longer than expected

The implementation wasn’t as 
straightforward as we initially 
thought though. Here is the start…



We start from comparing locally-hosted OCR engines 

Scanned
Documents 

Text Extraction with Local OCR Engine

Structured 
Outputs

* All above are under Apache, the local deployment would be suitable for even commercial usage



Try before making the choice – local OCR comparison

● One of the earliest open-source OCR engines 
funded in 1980s by HP; handed over to 
Google in 2006.

● LSTM-based algorithm for line/word 
detection and classifier-based character 
recognition. 

● Deep Learning framework was not popular 
that time, thus it wasn’t used much.

- High text recognition error rate 
- High chance of missing words 
- Wrongly separate words within the same field

*
X2000644N

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/33418.pdf


Try before making the choice – local OCR comparison

● Text detection is implemented using CRAFT 
algorithm with VGG-16 as the backbone in 
PyTorch.

● Text recognition is backboned by CRNN, 
consisting of ResNet as feature extraction, 
LSTM as sequence encoder, and CTC as the 
decoder.  

● The overall framework is modernized, but still 
doesn’t benefit from the latest 
transformer-based architecture.   

- Better at word detection 
- Worse recognition error rate 
- Better at finding long-field text, but still not 

satisfactory

Xzoo4lln

https://github.com/clovaai/CRAFT-pytorch
https://github.com/clovaai/CRAFT-pytorch
https://arxiv.org/abs/1507.05717
https://arxiv.org/abs/1512.03385
https://www.bioinf.jku.at/publications/older/2604.pdf
https://www.cs.toronto.edu/~graves/icml_2006.pdf


Try before making the choice – local OCR comparison

- Almost perfect at text detection and recognition
- Runnable on CPUs with 2-3s per page, but much faster 

on GPU at <10ms per page

● Text detection by default uses DB++, 
a ResNet-50 backboned model with 
Differentiable Binarization and 
Adaptive Scale Fusion.

● Text recognition by default uses 
SVTR, a Vision Transformer-like 
backboned model, with faster 
inference and higher accuracy.  

● An additional text direction classifier 
to deal with deskewed inputs. 

https://arxiv.org/abs/2202.10304
https://arxiv.org/pdf/2205.00159


Larger-scale testing on bigger dataset

● We tried extracting the text fields from EdisonTD dataset*, using the three different 
local OCR engines
○ >200 passport images from various countries

● Paddle OCR did consistently well, 
while the performance from 
Tesseract and easyOCR were consistent too
(on the negative side) :(

* EdisonTD is an open dataset covers containing information about travel and travel-related documents from almost every country on the globe

https://www.nidsenter.no/en/services/reference-databases/edison-td/


Now, we are ready to go!??



There is always a gap between expectation and reality

Expectation Reality

ph.jpg ph.pdf

- Always in png or jpg format 

- Perfectly cropped with a central view 

- Highest possible scanning quality

- All samples are normalized to the same size

- No rotation or significant image skewing 

- Most are in pdf format

- Actual image can be anywhere, with noisy background

- Scanning quality varies significantly

- Image files come in different sizes

- Rotations are very common with random angles 



But technically, what do they mean?

● Straightforward ones
○ Inputs are in pdf format — Convert pdfs into jpg/png formats
○ Images are rotated — Deskew the image based on the text direction
○ Images come in different sizes — Normalize the size

● Less intuitive ones
○ Scanned images are low-quality, even mature 

commercial OCR engines cannot do the job
■ Computer vision tricks to enhance the quality



Add the Preprocess module into the pipeline

Scanned
Documents 

Local 
OCR

Key Information 
Extraction 

with Local Model
Structured 

Outputs
Text-based

● BERT-Ner
● Spacy-Ner

Multimodal-based
● LayoutLM-series

LLM-based
● Llama 3
● Phi-3

Image 
Preprocess

● Format converter
● Size normalization
● Image cropping
● Re-normalization
● Image deskew
● Text enhancement

Paddle OCR

https://huggingface.co/dslim/bert-base-NER
https://spacy.io/universe/project/video-spacys-ner-model-alt
https://huggingface.co/docs/transformers/en/model_doc/layoutlmv3
https://www.llama.com/
https://huggingface.co/microsoft/Phi-3.5-MoE-instruct


Zoom into image pre-processing

Image 
Loader /  

Converter

Normalize 
Image

Image 
Cropping

Image 
deskew

Re-normal
ize Image

Text 
Enhance



Zoom into image pre-processing – image cropping

Grayscale 
and 

Smoothing

Morphological 
Opening and 

Closing

Thresholdi
ng

Find 
Borders 

and Crop
Normalized 

Image

https://www.geeksforgeeks.org/python-grayscaling-of-images-using-opencv/
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d7/d4d/tutorial_py_thresholding.html
https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html
https://docs.opencv.org/4.x/d1/d32/tutorial_py_contour_properties.html


Zoom into image pre-processing – image deskew

Cropped 
Image

Hough 
Transform 

Calculate 
Skewed 
Angle

CNN-based 
0° vs 180° 
Classifier

https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html
https://docs.opencv.org/3.4/d9/db0/tutorial_hough_lines.html


Zoom into image pre-processing – text enhancement

De-skewed 
Image

Erode Dilate Blackhat

https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/3.4/db/df6/tutorial_erosion_dilatation.html
https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html


Now are we ready for production usage yet?



Yes, we get good OCR results, but what’s more?

● OCR
○ Detect text bounding boxes
○ Recognize text in each box

● KIE
○ Accurately map relevant text fields into 

preloaded taxonomy
○ Discard irrelevant text fields from OCR



KIE using LayoutLM as a downstream task after OCR 

* Reference: Huang Yupan, et al. "Layoutlmv3: Pre-training for document ai with unified text and image masking." ACM International Conference on Multimedia, MM 2022 [paper] [code]

● Pre-trained transformer for 
○ Masked language model (MLM)
○ Masked image model (MIM)
○ Word patch alignment (WPA)

● A classification head for KIE in 
downstreaming usage

● In layman’s terms:
○ The model uses multimodal info, 

■ word meanings and positions
■ image content and positions
■ text-image alignment

https://arxiv.org/pdf/2204.08387.pdf
https://github.com/microsoft/unilm/tree/master/layoutlmv3


Oh no! we are lacking training samples — data augmentation
Border Crop Add Noise Rotation

Original Image

Padding

Perspective Color Jitter Posterized

And random 
combinations of 

them



We also need the right page from the right document

Passport 

Transcripts

Certificate 

ID card 

Input documents Stage 1. 
Document-level 

Classifier

Stage 2. 
Page-level 
Classifier



Document classifier – vision features

CLIP (Contrastive Image-Language Pretraining): 
Trained to match similarity between image and text 

caption pairs. Most similar caption used as prediction.

Tip-Adapter: Cache image features of a few training examples 
and their one-hot encoded labels. Take weighted sum of CLIP 

logits and Tip logits before making prediction.



Document classifier – text features and ensembles

● TF-IDF 
○ A statistical way to 

assign each word a 
score (in terms of 
frequency) to each 
class 

● Ensemble 
○ BaggingClassifier to 

combine vision and 
text classifier

○ Achieves 97% F1 for 
in-house PRS 
documents



Zoom-in to double check low-confidence entities

● Double-confirm entities
○ Some extractions could still 

have low confidence scores, 
especially for blurry entities

○ If confidence score is low, we 
zoom in and re-do a local 
OCR



Further post-processing with domain knowledges
● Date format normalization

○ Different document type naturally has different 
date format

○ Even for the same document type, different 
country comes with different date format

○ Rules are added to normalize date according to 
document context

● Typo auto-correction & Field validation
○ Quite often, OCR mis-recognizes one or two letters 

among long sentences

○ Maintain common words set and common OCR errors 

○ Check Levenshtein distance and candidate frequency 
to auto-correct typos



Now, the completed pipeline looks like this!

Scanned
Documents 

Local 
OCR

Local 
KIE 

Model

Structured 
Outputs

● LayoutLMv3

Image 
Preprocess

● Format converter
● Size normalization
● Image cropping
● Re-normalization
● Image deskew
● Text enhancement

● Paddle OCR

Post 
Process

● Zoom-in for double-confirm
● Date normalization
● Typo correction
● Field validation

Document 
/ Page 

Classifier

● CLIP vision model
● TF-IDF text model

https://huggingface.co/docs/transformers/en/model_doc/layoutlmv3


And here is the real production impact on PRS
● Integrated with PRS online submission system, providing 

real-time document processing with 1-2s latency  

● Launched publicly in June 2024

● 18% of applications were prevented from being routed back 
due to submitted information mismatches

https://www.healthprofessionals.gov.sg/snb/registration-enrolment/application-for-registration-enrolment


Can we move it further!



Let’s turn OCR into a white box – optimize from inside out

Text 
Detection

Text 
Orientation 
Classifier

Text 
Recognition

OCR Engine

or
PASSPORT



Why fine-tune OCR models? 

● Special and unique fonts are not uncommon
○ Educational certificates / transcripts

○ Professional verification certificates

○ Marriage certificates

● These cannot be reliably detected, classified, 
or recognized 



Fine-tune text detection model – DB algorithm as an example

Pre-trained ResNet50 as the backbone 
for image feature extraction

Pre-trained ResNet-FPN (Feature Pyramid Network) 
as the neck for image feature enhancement

Detection head with 1 conv and 
2 de-conv layers each for 
probability and threshold map

Calculate Differentiable 
Binary (DB) map

BCE (Binary Cross-Entropy) 
as the loss function 

* Reference: Minghui Liao, et al. "Real-time Scene Text Detection with Differentiable Binarization." AAAI, 2020 [paper]

https://arxiv.org/pdf/1911.08947


Fine-tune text direction classification model

* Reference: Andrew Howard, et al. "Searching for MobileNetV3." ICCV, 2019 [paper]

Pre-trained light-weighted MobileNet-v3 as the 
backbone for image feature extraction

1 FC (Fully Connected) 
layer, followed by softmax 
as the classification 
head, with Cross-Entropy 
as the loss

https://arxiv.org/pdf/1905.02244


Fine-tune text recognition model – SVTR as an example  
ViT (Vision Transformer) 
based patch embedding 
as the backbone 

Height progressively decreased network 
as the neck to aggregate spatial features 
into sequential ones 

A fully connected layer using 
CTC (Connectionist Temporal 
Classification) loss as the head 

* Reference: Yongkun Du, et al. "SVTR: Scene Text Recognition with a Single Visual Model." IJCAI, 2022 [paper]

https://arxiv.org/pdf/2205.00159


Blurry detection – ask for immediate reupload if blurry

Laplacian 
operator

● The Laplacian operator is applied 
to an image by convolving the 
operator with each pixel 

● The result of the convolution is a 
new image that highlights the 
edges in the original image

● A Laplacian variance can be 
used as a focus measure to 
differentiate blurry vs. in-focus 
images



Table 
detection 

Reconstruct 
tables 

● A two-step processing for tables
○ Object detection using yolo to locate tables, if any
○ Re-construct tables using table structure and cell locations, using SLAnet

Table detection & extraction – dealing with tables

https://github.com/ultralytics/ultralytics
https://arxiv.org/pdf/2210.05391.pdf


End-to-End delivery with a team of 3 data scientists

DATA GATHERING 
& CLEANING

SOFTWARE 
ENGINEERING

DEVOPS



Tech Stack

Language

Backend

DevOps

Cloud

Python, Typescript, Shell

FastAPI,  Uvicorn, PyTorch, Transformers, OpenCV, PaddleOCR, OpenClip, 
Spacy, XGBoost, GliNER PyMuPDF, Ultralytics, PyTest

GitLab CI/CD, Kubernetes, Docker, CloudWatch, Parameter Store

AWS S3, ECR, ECS (CPU Fargate / GPU), ALB+ASG, SageMaker, NAT 
Gateway, Lambda, EventBridge 



Engineering practices – quality assurance with enough tests

Unit Test Integration Test Regression Test Performance Test

Ensures each individual 
unit works as expected.

Ensures the end-to-end 
outputs align with our  
expectations.

Ensures any new logic, 
models, or features 
won’t cause a decline in 
the functionality of 
existing systems. 

Ensures the latency and 
scalability under certain 
workload.  



Gitlab CI Pipeline CD Pipeline on GCC

Engineering practices – CI/CD workflow for in-house services

Local Dev GCC Cloud Agency’s Infra

Dev/UAT Review

Prod Usage



Engineering practices – real-time metrics monitor dashboard

● One-single place to know your 
deployed service

○ Overall product metrics

○ Technical metrics

○ Detailed views with breakdown  
from different document types

○ Real-time alarming if anything 
goes wrong



Engineering practices – model iteration and versioning



Business highlights – unique advantages of READ

- Security Compliance

- Vision Extractions

- Accuracy & speed

- Cost Efficiency

Able to serve sensitive-high documents 
(e.g. medical reports, PII, etc) 

Able to serve both text and visual data 
(e.g. photo, signature, stamp, medical plot, etc)

Fixed infra cost means lower unit price 
(much lower than COTS) with big volume

Able to achieve >95% accuracy with 
1-2s end-to-end delay*

* the accuracy and latency is reported based on the documents from our SNB/MOH use case, which is significantly better than COTS  



What are our next steps?



● Agencies handling complex documents/images/video preferably in 
sensitive-high systems with large volume

● Enable complex document/image/video understanding capabilities for other 
GovTech platform services

Product expansion – potential use cases beyond PRS



Technical advance – an AI agent to learn from the mistakes  

● Complete the loop to automate model iteration with human-corrected outputs
○ So that the same mistakes won’t repeat again and again

● All agencies can benefit from model iteration, without actually sharing the data



Interested to know more? – the team is ready for questions

JIN Yichao
Data Scientist

CHONG Zi Kang
Data Scientist

SHEN Lin
Data Scientist

jin.yichao@gt.tech.gov.sg chong.zi.kang@gt.tech.gov.sg shen.lin@gt.tech.gov.sg 

mailto:jin.yichao@gt.tech.gov.sg
mailto:chong.zi.kang@gt.tech.gov.sg
mailto:shen.lin@gt.tech.gov.sg

